

    
      
          
            
  
About Silo…

Silo is a library for reading and writing a wide variety of scientific data to binary, files.
The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms.
Consequently, Silo facilitates the development of general purpose tools for processing scientific data.
One of the more popular tools that process Silo data files is the VisIt [https://github.com/visit-dav/visit] visualization tool.
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Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes, piecewise-constant (e.g., zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials.
In addition, Silo supports a wide variety of other useful objects and metadata to address various scientific computing application needs.
Although the Silo library is a serial library, key features enable it to be applied effectively in scalable, parallel applications using the Multiple Independent File (MIF) [https://www.hdfgroup.org/2017/03/mif-parallel-io-with-hdf5/] parallel I/O paradigm.

Architecturally, the library is divided into two main pieces; an upper-level application programming interface (API) and a lower-level I/O implementation called a driver.
Silo supports multiple I/O drivers.
The two most common are the HDF5 (Hierarchical Data Format 5) and PDB (Portable DataBase) drivers.


Major sections of the user’s manual



	Introduction to Silo

	Error Handling and Global Library Behavior

	Files and File Structure

	Meshes, Variables and Materials

	Multi-Block Objects and Parallel I/O

	Part Assemblies, AMR, Slide Surfaces, Nodesets and Other Arbitrary Mesh Subsets

	Object Allocation, Free and IsEmpty Tests

	Calculational and Utility

	Option Lists or Optlists

	User Defined (Generic) Data and Objects

	JSON Interface to Silo Objects

	Previously Undocumented Use Conventions

	Fortran Interface

	Python Interface

	Deprecated Functions

	Silo Library Header File







Contacts

For inquiries, users are encouraged to use Silo’s GitHub Discussions space [https://github.com/LLNL/Silo/discussions].
GitHub accounts are free.





            

          

      

      

    

  

    
      
          
            
  
Introduction to Silo


Overview

Silo is a library which implements an application programing interface (API) designed for reading and writing a wide variety of scientific data to binary, files.
The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms.

Consequently, the Silo API facilitates the development of general purpose tools for processing scientific data.
One of the more popular tools that process Silo data files is the VisIt [https://visit.llnl.gov] visualization tool.

Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes as well as piecewise-constant (e.g. zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials.
In addition, Silo supports a wide variety of other useful objects and metadata to address various scientific computing application needs.
Although the Silo library is a serial library, key features enable it to be applied effectively in scalable, parallel applications using the Multiple Independent File (MIF) [https://www.hdfgroup.org/2017/03/mif-parallel-io-with-hdf5/] parallel I/O paradigm.

Architecturally, the library is divided into two main pieces; an upper-level application programming interface (API) and a lower-level I/O implementation called a driver.
Silo supports multiple I/O drivers, the two most common of which are the HDF5 (Hierarchical Data Format 5) and PDB [https://code.google.com/archive/p/pactnew/source/default/source?page=50] (Portable DataBase, an API and binary database file format developed at LLNL by Stewart Brown and not to be confused with Protien Database also abbreviated as PDB) drivers.
However, the reader should take care not to infer from this that Silo can read any HDF5 or PDB file.
It cannot.
For the most part, Silo is able to read only files that it has also written.



Where to Find Example Code

In the tests [https://github.com/LLNL/Silo/tree/main/tests] directory within the Silo source tree, there are numerous example C codes that demonstrate the use of Silo for writing various types of data.
There are not as many examples of reading the data there.

If you are interested in point meshes, for example, you would search (e.g. grep -i pointmesh) for DBPutPointMesh.
Or, if you are interested in how to use some option like DBOPT_CONSERVED, search for it within the C files in the tests directory.



Brief History and Background

Development of the Silo library began in the early 1990’s at Lawrence Livermore National Laboratory to address a range of issues related to the storage and exchange of data among a wide variety of scientific computing applications and platforms.

In the early days of scientific computing, roughly 1950 - 1980, simulation software development at many labs, like Livermore, invariably took the form of a number of software stovepipes.
Each big code effort included sub-efforts to develop supporting tools for data browsing and differencing, visualization, and management.

Developers working in a particular stovepipe designed every piece of software they wrote, simulation code and tools alike, to conform to a common representation for the data.
In a sense, all software in a particular stovepipe was really just one big, monolithic application, held together by a common, binary or ASCII file format.

Data exchanges across stovepipes were laborious and often achieved only by employing one or more computer scientists whose sole task in life was to write a conversion tool called a linker.
Worse, each linker needed to be kept it up to date as changes were made to one or the other codes that it linked.
In short, there was nothing but brute force data sharing and exchange.
Furthermore, there was duplication of effort in the development of data analysis and management tools for each code.

Between 1980 and 2000, an important innovation emerged, the general purpose I/O library.
In fact, two variants emerged each working at a different level of abstraction.
One focused on lower level abstractions…the objects of computer science.
That is data structures such as arrays, structs and linked lists.
The other focused on higher level abstractions…the objects of computational science.
That is meshes and fields defined thereon.

Examples of the former are netCDF [https://github.com/Unidata/netcdf-c], HDF (HDF4 and HDF5 [https://github.com/HDFGroup/hdf5]) and PDB [https://code.google.com/archive/p/pactnew/source/default/source?page=50].
Examples of the latter are ExodusII [https://github.com/sandialabs/exodusii], Mili [https://github.com/mdg-graphics/mili] and Silo.
At the same time, the higher level libraries are often implemented on top the lower level libraries.
For example, Silo is implemented on top of either HDF5 or PDB and ExodusII is implemented on top of netCDF.



Silo Architecture

Silo has several drivers.
Some are read-only and some are read-write.
These are illustrated in the figure below…
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Silo supports both read and write on the PDB (Portable DataBase) and HDF5 drivers.
In addition, Silo supports two different flavors of PDB drivers.
One known within Silo as PDBLite and is just called PDB which is a very old version of PDB that was frozen into the Silo library in 1999.
That is the default driver.
The other flavor of PDB is known within Silo as PDB Proper and can use a more recent release of the PDB library.

Although Silo can write and read PDB and HDF5 files, it cannot read just any PDB or HDF5 file.
It can read only PDB or HDF5 files that were also written with Silo.
Silo supports only read on the Taurus and netCDF drivers.
The particular driver used to write data is chosen by an application when a Silo file is created.
It can be automatically determined by the Silo library when a Silo file is opened.


Reading Silo Files

The Silo library has application-level routines to be used for reading mesh and mesh-related data.
These functions return compound C data structures which represent data in a general way.



Writing Silo files

The Silo library contains application-level routines to be used for writing mesh and mesh-related data into Silo files.

In the C interface, the application provides a compound C data structure representing the data.
In the Fortran interface, the data is passed via individual arguments.



Terminology

Here is a short summary of some of the terms used throughout the Silo interface and documentation. These terms are common to most computer simulation environments.


	Mesh
	A discretization of a computational domain over which variables (fields) are defined.
A mesh is a collection of points (aka nodes) optionally knitted together to form a network of higher dimensional primitive shapes (aka elements) via enumeration (explicit or implicit) of nodal connectivities.

Practically speaking, a mesh consists of a list of nodes with coordinates and, optionally, one or more list(s) of elements, where each element is defined either directly in terms of the nodes or indirectly in terms of other elements which are ultimately defined in terms of the nodes.

A mesh supports two notions of dimension.
One is its geometric (or spatial) dimension and the other is its parametric (or topological) dimension.
For example, the path of a rocket going into orbit around the Earth has three geometric dimensions (e.g. latitude, longitude and elevation).
However, in parametric terms, that path is really just a one dimensional mesh (e.g. a curve).



	Node
	A mathematical point.
The fundamental building-block of the elements of a mesh.
Other names for node are point or vertex.
The topological dimension of a node is always zero.
A point has no extent in any dimension or coordinate space.



	Zone
	An element of a mesh.
An element defines a region of support over which a variable (aka field, see below) may be interpolated.
Zones are typically polygons or polyhedra with nodes as their vertices.
Other names for zone are cell or element.



	Variable (or Field)
	A field defined on a computational mesh or portion thereof.
Variables usually represent some physical quantity (e.g., pressure or velocity) but that is not a requirement.
Variables typically account for the overwhelming majority of data stored in a Silo database.

The set of numbers stored for a variable are in general not the field’s values but instead the field’s degrees of freedom used in a given numerical scheme to interpolate the field over the elements of a mesh.
However, for piecewise-constant and piecewise-linear interpolation schemes over the standard zoo of element shapes and types, the numbers stored are indeed also the field’s values.
This is due to the fact that the associated interpolation schemes are indeed interpolating as opposed to approximating.

The terms zone-centered (or cell-centered or element-centered) and node-centered (or vertex-centered) are synonyms for piecewise-constant and piecewise-linear interpolation schemes, respectively



	Coordinate Field
	The coordinates of a mesh are a field like any other field.
The coordinates are a special field and must obey certain mathematical properties to serve as coordinates.
However, it is important to understand that the coordinates of a mesh are also just a field.

In Silo, coordinate fields are written as part of the DBPutXxxmesh() methods whereas other fields on the mesh are written with DBPutXxxvar() methods.
The coordinates are always node-centered (e.g. piecewise-linear interpolating).
It may be possible to support higher order interpolation schemes in the coordinate fields by adopting certain use conventions which downstream post-processing tools will also need to be made aware of.



	Material
	A decomposition of a mesh into distinct regions having different properties of some kind.
Typically, different groups of elements of the mesh represent different physical materials such as brass or steel.

In the case of mixing materials, a single element may include contributions from more than one constituent material.
In this case, the fractions of each material contained in the element is also part of the material description.



	Material Species
	A decomposition of a material into different concentrations of pure, atomic table elements.
For example, common yellow brass is, nominally, a mixture of Copper (Cu) and Zinc (Zn) while tool steel is composed primarily of Iron (Fe) but mixed with some Carbon (C) and a variety of other elements.
In certain computational science scenarios, detailed knowledge of the concentration of the constutient atomic elements comprising each material is needed.



	Block
	A block defines one coherent, contiguous piece (or fragment) of a larger mesh that has been decomposed into pieces typically for parallel processing but also potentially for other purposes such as streaming analysis, etc.
The coordinates, connectivities and associated mesh variables of a block are all enumerated relative to the block and independently from any other block.
In some sense, block’s represent the fundamental storage quanta of a mesh that is too large to process as a single, monolithic whole.

A mesh that is decomposed into blocks is called a multi-block mesh.
To go along with multi-block meshes, there are multi-block variables, multi-block materials and multi-block species.
Different blocks of a larger mesh may be stored in different Silo files.

Frequently, blocks are also called domains.








Computational Meshes Supported by Silo

Silo supports several classes, or types, of meshes. These are quadrilateral, unstructured-zoo, unstructured-arbitrary, point, constructive solid geometry (CSG), and adaptive refinement meshes.


Quadrilateral-Based Meshes and Related Data

A quadrilateral mesh is one which contains four nodes per zone in 2-D and eight nodes per zone (four nodes per zone face) in 3-D.
Quad meshes can be either regular, rectilinear, or curvilinear, but they must be logically rectangular
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UCD-Based Meshes and Related Data

An unstructured cell data (UCD) mesh is a very general mesh representation; it is composed of an arbitrary list of zones of arbitrary sizes and shapes.
Most meshes, including quadrilateral ones, can be represented as an unstructured mesh (Fig. 1-4).
Because of their generality, however, unstructured meshes require more storage space and more complex algorithms.

In UCD meshes, the basic concept of zones (cells) still applies, but there is no longer an implied connectivity between a zone and its neighbor, as with the quadrilateral mesh.
In other words, given a 2-D quadrilateral mesh zone accessed by (i, j), one knows that this zone’s neighbors are (i-1,j), (i+1,j), (i, j-1), and so on.
This is not the case with a UCD mesh.

In a UCD mesh, a structure called a zonelist is used to define the nodes which make up each zone.
A UCD mesh need not be composed of zones of just one shape (Fig. 1-5).
Part of the zonelist structure describes the shapes of the zones in the mesh and a count of how many of each zone shape occurs in the mesh.
The facelist structure is analogous to the zonelist structure, but defines the nodes which make up each zone face.
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Point Meshes and Related Data

A point mesh consists of a set of locations, or points, in space.
This type of mesh is well suited for representing random scalar data, such as tracer particles.



Constructive Solid Geometry (CSG) Meshes and Related Data

A constructive Solid Geometry mesh is constructed by boolean combinations of solid model primitives such as spheres, cones, planes and quadric surfaces.
In a CSG mesh, a zone is a region defined by such a boolean combination.
CSG meshes support only zone-centered variables.



Block Structured, Adaptive Refinement Meshes (AMR) and Related Data

Block structured AMR meshes are composed of a large number of Quad meshes representing refinements of other quad meshes.
The hierarchy of refinement is characterized using a Mesh Region Grouping (MRG) tree.



Summary of Silo’s Computational Modeling Objects

Objects are a grouping mechanism for maintaining related variables, dimensions, and other data.
The Silo library understands and operates on specific types of objects including the previously described computational meshes and related data.
The user is also able to define arbitrary objects for storage of data if the standard Silo objects are not sufficient.

The objects are generalized representations for data commonly found in physics simulations.
These objects include:


	Quadmesh
	A mesh where the elements are implicitly defined by a logical cross product of the parametric dimensions.
In one dimension, the elements are edges.
In two dimensions, they are quadrilaterals
In three dimensions, cubes.
The geometric dimensions may also be implicitly defined by a cross product (e.g. rectilinear mesh) or they may be explicit (e.g. curvilinear mesh).



	Quadvar
	A variable associated with a quad mesh.
This includes the variable’s data, centering information (node-centered vs. zone centered), and the name of the quad mesh with which this variable is associated.
Additional information, such as time, cycle, units, label, and index ranges can also be included.



	Ucdmesh
	An unstructured cell data (UCD) mesh.
This is a mesh where the elements are only ever explicitly defined via enumeration of nodal connectivities.
This includes the dimension, connectivity, and coordinate data, but typically also includes the mesh’s coordinate system, labelling and unit information, minimum and maximum extents, and a list of face indices.

Any quad mesh can be respresented as a UCD mesh.
However, the reverse is not true.

A quad mesh offers certain storage efficiencies (for the coordinate data) over UCD meshes.
When the number of variables associated with a quad mesh is small, those efficiencies can be significant.
However, as the number of variables grows, they are quickly washed out.

When considering all the data stored in a Silo file, the storage efficiency is often not significant.
However, when considering all the data needed in memory at any one time to perform a specific data analysis task (e.g. produce a Pseudocolor plot), the storage efficiency is indeed significant.



	Ucdvar
	A variable associated with a UCD mesh.
This includes the variable’s data, centering information (node-centered vs.  zone-centered), and the name of the UCD mesh with which this variable is associated.
Additional information, such as time, cycle, units, and label can also be included.



	Pointmesh
	A mesh consisting entirely of points as the mesh elements.
A pointmesh has a parametric (topological) dimension of zero.
However, a pointmesh can have a geometric dimension of 1, 2 or 3 (or more).



	Csgmesh
	A constructive solid geometry (CSG) mesh.
This is a mesh where the elements are defined by set expressions (e.g. unions, intersections and differences) involving a handful of primitive shapes (e.g. sphers, cylinders, cones, etc.)



	Csgvar
	A variable defined on a CSG mesh (always piecewise-constant or zone centered).



	Defvar
	Defined variable representing an arithmetic expression involving other variables.
The arithmetic expression may involve the names of functions (e.g. log(), cos(), etc.).
The named functions may be specific to a given post-processing tool (e.g. the function revolved_volume() is known only to VisIt).



	Material
	An object defining all the materials present in a given mesh.
This includes the number of materials present, a list of valid material identifiers, a zonal-length array which contains the material identifiers for each zone and, optionally, the material fractions associated with materials mixing in one or more zones.

Silo’s mixed material data structure can trace its roots to Fortran codes developed at Livermore Labs in the early 1960s.
It is a complicated data structure for software developers to deal with.



	Zonelist
	An object enumerating the nodal connectivities of elements comprising a mesh.



	PHZonelist
	An extension of a zonelist to support arbitrary polyhedra.
In a PHZonelist, elements are enumerated in terms of their faces and the faces are enumerated in terms of their nodes.



	Facelist
	Face-oriented connectivity information for a UCD mesh.
This object contains a sequential list of nodes which identifies the external faces of a mesh, and arrays which describe the shape(s) of the faces in the mesh.
It may optionally include arrays which provide type information for each face.



	Material species
	Extra material information.
A material species is a type of a material.
They are used when a given material (i.e. air) may be made up of other materials (i.e. oxygen, nitrogen) in differing amounts.



	Mesh Region Grouping (MRG) tree
	Generalized mechanism used to define arbitray subsets of a mesh.
MRG trees define how zones in the mesh may be grouped into parts, materials, boundary conditions, nodesets or facesets, etc.



	Groupel Map
	A grouping element map.
Used in concert with an MRG tree to hold problem-sized data defining subsetted regions of meshes.



	Multiblock
	A way of specifying how a mesh is decomposed into pieces for I/O and computation



	Multimesh
	A set of mesh pieces (usually parallel decomposition) comprising a larger aggregate mesh object.
This object contains the names of and types of the meshes in the set.



	Multivar
	A set of variable pieces comprising a larger aggregate variable object.
Mesh variable data associated with a multimesh.



	Multimat
	A set of material pieces.
This object contains the names of the materials in the set.



	Multimatspecies
	A set of material species.
This object contains the names of the material species in the set.



	Curve
	X versus Y data.
This object must contain at least the domain and range values, along with the number of points in the curve.
In addition, a title, variable names, labels, and units may be provided.







Other Silo Objects

In addition to the objects listed in the previous section which are tailored to the job of representing computational data from scientific computing applications.
Silo supports a number of other objects useful to scientific comput-ing applications.
Some of the more useful ones are briefly summarized here.


	Compound Array
	A struct-like object which contains a list of similarly typed but differently named and sized (usually small) items that one often treats as a
group (particularly for I/O purposes).



	Directory
	A silo file can be organized into directories (or folders) in much the same way as a Unix file system.



	Optlist
	An options list object used to pass additional options to various Silo API functions.



	Simple Variable
	A simple variable is just a named, multi-dimensional array of arbitrary data.
This object contains, in addition to the data, the dimensions and data type of the array.
This object is not required to be associated with any mesh.



	User Defined Object
	A generic, user-defined object of arbitrary composition.



	Extended Silo Object
	A Silo object which includes any number of user-defined additional data members.








Silo’s Fortran Interface

The Silo library is implemented in C.
Nonetheless, a set of Fortran callable wrappers have been written to make a majority of Silo’s functionality available to Fortran applications.
These wrappers simply take the data that is passed through a Fortran function interface, re-package it and call the equivalent C function.
However, there are a few limitations of the Fortran interface.


Limitations of Fortran Interface

First, the Fortran interface is primarily a write-only interface.
This means Fortran applications can use the interface to write Silo files so that other tools, like VisIt, can read them.
However, for all but a few of Silo’s objects, only the functions necessary to write the objects to a Silo file have been implemented in the Fortran interface.
This means Fortran applications cannot really use Silo for restart file purposes.

Conceptually, the Fortran interface is identical to the C interface.
To avoid duplication of documentation, the Fortran interface is documented right along with the C interface.
However, because of differences in C and Fortran argument passing conventions, there are key differences in the interfaces.
Here, we use an example to outline the key differences in the interfaces as well as the rules to be used to construct the Fortran interface from the C.



Conventions used to construct the Fortran interface from C

In this section, we show an example of a C function in Silo and its equivalent Fortran.
We use this example to demonstrate many of the conventions used to construct the Fortran interface from the C.

We describe these rules so that Fortran user’s can be assured of having up to date documentation (which tends to always first come for the C interface) but still be aware of key differences between the two.

A C function specification…

int DBAddRegionArray(DBmrgtree *tree, int nregn, const char **regn_names,
    int info_bits, const char *maps_name, int nsegs, int *seg_ids, int *seg_lens, 
    int *seg_types, DBoptlist *opts)





The equivalent Fortran function…

integer function dbaddregiona(tree_id, nregn, regn_names, lregn_names, 
    type_info_bits, maps_name, lmaps_name, nsegs, seg_ids, seg_lens, seg_types, 
    optlist_id, status)

    integer tree_id, nregn, lregn_names, type_info_bits, lmaps_name
    integer nsegs, optlist_id, status
    integer lregn_names(), seg_ids(), seg_lens(), seg_types()
    character* maps_name
    character*N regn_names






About Fortran’s l<strname> arguments

Wherever the C interface accepts a char*, the fortran interface accepts two arguments; the character* argument followed by an integer argument indicating the string’s length.
In the function specifications, it will always be identified with an ell (l) in front of the name of the character* argument that comes before it.
In the example above, this rule is evident in the maps_name and lmaps_name arguments.



About Fortran’s l<strname>s arguments

Wherever the C interface accepts an array of char* (e.g. char**), the Fortran interface accepts a character*N followed by an array of lengths of the strings.
In the above example, this rule is evident by the regn_names and lregn_names arguments.
By default, N=32, but the value for N can be changed, as needed by the dbset2dstrlen() method.



About Fortran’s <object>_id arguments

Wherever the C interface accepts a pointer to an abstract Silo object, like the Silo database file handle (DBfile *) or, as in the example above, a DBmrgtree*, the Fortran interface accepts an equivalent pointer id.
A pointer id really an integer index into an internally maintained table of pointers to Silo’s objects.
In the above example, this rule is evident in the tree_id aand optlist_id arguments.



About Fortran’s data_ids arguments

Wherever the C interface accepts an array of void* (e.g. a void** argument), the Fortran interface accepts an array of integer pointer ids.
The Fortran application may use the dbmkptr() function to a create the pointer ids to populate this array.
The above example does not demonstrate this rule.



ABout Fortran’s status arguments

Wherever the C interface returns integer error information in the return value of the function, the Fortran interface accepts an extra integer argument named status as the last argument in the list.
The above example demonstrates this rule.

Finally, there are a few function in Silo’s API that are unique to the Fortran interface.
Those functions are described in the section of the API manual having to do with Fortran.





Using Silo in Parallel

Silo is a serial library.
Nevertheless, it (as well as the tools that use it like VisIt) has several features that enable its effective use in parallel with excellent scaling behavior.
However, using Silo effectively in parallel does require an application to store its data to multiple Silo files typically depending on the number of concurrent I/O channels the application has available at the time of Silo file creation.

The two features that enable Silo to be used effectively in parallel are its ability to create separate namespaces (directories) within a single file and the fact that a multi-block object can span multiple Silo files.
With these features, aparallel application can easily divide its processors into N groups and write a separate Silo file for each group.

Within a group, each processor in the group writes to its own directory within the Silo file.
One and only one processor has write access to the group’s Silo file at any one time.
So, I/O is serial within a group.
However, because each group has a separate Silo file to write to, each group has one processor writing concurrently with other processors from other groups.
So, I/O is parallel across groups.

After all processors have created all their individual objects in various directories within the each group’s Silo file, one processor is designated to write multi-block objects.
The multi-block objects serve as an assembly of the names of all the individual objects written from various processors.

When N, the number of processor groups, is equal to one, I/O is effectively serial.
All the processors write their data to a single Silo file.
When N is equal to the number of processors, each processor writes its data to its own, unique Silo file.
Both of these extremes are bad for effective and scalable parallel I/O.
A good choice for N is the number of concurrent I/O channels available to the application when it is actually running.

This technique for using a serial I/O library effectively in parallel while being able to tune the number of files concurrently being written to is Multiple Independent File (MIF) [https://www.hdfgroup.org/2017/03/mif-parallel-io-with-hdf5/] parallel I/O.

There is a separate header file, pmpio.h, with a set of convenience CPP macros and methods to facilitate PMPIO-based parallel I/O with Silo.





            

          

      

      

    

  

    
      
          
            
  
Error Handling and Global Library Behavior

The functions described in this section of the Silo manual, are those that effect behavior of the library, globally, for any file(s) that are or will be created or opened.
These include such things as error handling, requiring Silo to do extra work to warn of and avoid overwrites, to compute and warn of checksum errors and to compress data before writing it to disk.


Global and File-level variants

Some behaviors have both file level and global variants.
For example, see DBSetAllowOverwrites() and DBSetAllowOverwritesFile().

When a file is *opened or created, it inherents whatever the library’s global settings are.
However, a file’s settings can be adjusted independently from the library’s global settings by calling the equivalent DBSetXxxFile() methods.
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Files and File Structure

If you are looking for information regarding how to use Silo from a parallel application, please See the section on Multi-Block Objects Parallel I/O.

The Silo API is implemented on a number of different low-level drivers.
These drivers control the low-level file format Silo generates.
For example, Silo can generate PDB (Portable DataBase) and HDF5 formatted files.
The specific choice of low-level file format is made at file creation time.

In addition, Silo files can themselves have directories (folders).
That is, within a single Silo file, one can create directory hierarchies for storage of various objects.
These directory hierarchies are analogous to the Unix file system.
Directories serve to divide the n